Laman

Minggu, 17 Juli 2011

Makalah RME


 
REALISTIC MATHEMATICS EDUCATION (RME)
MAKALAH

Disusun untuk memenuhi tugas
Mata kuliah Pengembangan Pembelajaran Matematika SD
Dosen Pengampu : Ibu Nursiwi Nugraheni

Oleh :
1.      Khoirudin Akhmad Fauzi                      1402408313
2.      Hermawan Purnomo Aji                       1402408032
3.      Maoidatul Dwi Kurniawati                    1402408303
4.      Kristina Murti Anissa                            1402408188
5.      Saila Ainun Nikmah                              1402408330
6.      Eviana Rahmatika                                 1402408101
7.      Saodah                                                 1402408127
8.      Melan Ayu Ninda Karista                     1402408225

Rombel 03



PENDIDIKAN GURU SEKOLAH DASAR S1
FAKULTAS ILMU PENDIDIKAN
UNIVERSITAS NEGERI SEMARANG
2011



BAB I
PENDAHULUAN

A. Pendahuluan
Dalam pembelajaran matematika selama ini, dunia nyata hanya dijadikan tempat mengaplikasikan konsep. Siswa mengalami kesulitan matematika di kelas. Akibatnya, siswa kurang menghayati atau memahami konsep-konsep matematika, dan siswa mengalami kesulitan untuk mengaplikasikan matematika dalam kehidupan sehari-hari.
Salah satu pembelajaran matematika yang berorientasi pada matematisasi pengalaman sehari-hari (mathematize of everyday experience) dan menerapkan matematika dalam kehidupan sehari-hari adalah pembelajaran Matematika Realistik (MR).
Karakteristik RME adalah menggunakan konteks “dunia nyata”, model-model, produksi dan konstruksi siswa, interaktif, dan keterkaitan (intertwinment). Berkaitan dengan hal itu, tulisan ini bertujuan untuk memaparkan secara teoretis pembelajaran matematika realistik, pengimplementasian pembelajaran MR, serta kaitan antara pembelajaran MR dengan pengertian. Pembelajaran Matematika Realistik memberikan kesempatan kepada siswa untuk menemukan kembali dan merekonstruksi konsep-konsep matematika, sehingga siswa mempunyai pengertian kuat tentang konsep-konsep matematika. Dengan demikian, pembelajaran Matematika Realistik akan mempunyai kontribusi yang sangat tinggi dengan pengertian siswa.

B. Rumusan Masalah
1.      Apa itu Realistic Mathematics Education (RME) ?
2.      Bagaimana penerapan Realistic Mathematics Education (RME) di SD?
3.      Bagaimana peran siswa dalam Realistic Mathematics Education (RME) di SD?

C. Tujuan
1.      Memenuhi tugas mata kuliah Pengembangan Pembelajaran Matematika SD
2.      Menambah pengetahuan dalam bidang Matematika mengenai Realistic Mathematics Education (RME)
3.      Mengetahui Penerapan Realistic Mathematics Education (RME) di SD


BAB II
PEMBAHASAN

A.     Realistic Mathematics Education (RME)
Realistic Mathematics Education (RME) merupakan teori belajar mengajar dalam pendidikan matematika. Teori RME pertama kali diperkenalkan dan dikembangkan di Belanda pada tahun 1970 oleh Institut Freudenthal. Teori ini mengacu pada pendapat Freudenthal yang mengatakan bahwa matematika harus dikaitkan dengan realita dan matematika merupakan aktivitas manusia. Ini berarti matematika harus dekat dengan anak dan relevan dengan kehidupan nyata sehari-hari. Matematika sebagai aktivitas manusia berarti manusia harus diberikan kesempatan untuk menemukan kembali ide dan konsep matematika dengan bimbingan orang dewasa (Gravemeijer, 1994). Upaya ini dilakukan melalui penjelajahan berbagai situasi dan persoalan-persoalan “realistik”. Realistik dalam hal ini dimaksudkan tidak mengacu pada realitas tetapi pada sesuatu yang dapat dibayangkan oleh siswa (Slettenhaar, 2000). Prinsip penemuan kembali dapat diinspirasi oleh prosedur-prosedur pemecahan informal, sedangkan proses penemuan kembali menggunakan konsep matematisasi.
Dua jenis matematisasi diformulasikan oleh Treffers (1991), yaitu matematisasi horisontal dan vertikal.
Contoh matematisasi horisontal adalah pengidentifikasian, perumusan, dan penvisualisasi masalah dalam cara-cara yang berbeda, dan pentransformasian masalah dunia real ke masalah matematik.
Contoh matematisasi vertikal adalah representasi hubungan-hubungan dalam rumus, perbaikan dan penyesuaian model matematik, penggunaan model-model yang berbeda, dan penggeneralisasian. Kedua jenis matematisasi ini mendapat perhatian seimbang, karena kedua matematisasi ini mempunyai nilai sama (Van den Heuvel-Panhuizen, 2000) .
Berdasarkan matematisasi horisontal dan vertikal, pendekatan dalam pendidikan matematika dapat dibedakan menjadi empat jenis yaitu mekanistik, emperistik, strukturalistik, dan realistik. Pendekatan mekanistik merupakan pendekatan tradisional dan didasarkan pada apa yang diketahui dari pengalaman sendiri (diawali dari yang sederhana ke yang lebih kompleks). Dalam pendekatan ini manusia dianggap sebagai mesin. Kedua jenis matematisasi tidak digunakan.
Pendekatan emperistik adalah suatu pendekatan dimana konsep-konsep matematika tidak diajarkan, dan diharapkan siswa dapat menemukan melalui matematisasi horisontal. Pendekatan strukturalistik merupakan pendekatan yang menggunakan sistem formal, misalnya pengajaran penjumlahan cara panjang perlu didahului dengan nilai tempat, sehingga suatu konsep dicapai melalui matematisasi vertikal.
Pendekatan realistik adalah suatu pendekatan yang menggunakan masalah realistik sebagai pangkal tolak pembelajaran. Melalui aktivitas matematisasi horisontal dan vertikal diharapkan siswa dapat menemukan dan mengkonstruksi konsep-konsep matematika.

B.     Prinsip RME
Esensi lain pembelajaran matematika realistik adalah tiga prinsip kunci yang dapat dijadikan dasar dalam merancang pembelajaran. Gravemeijer (1994: 90) menyebutkan tiga prinsip tersebut, yaitu (1) guided reinvention and progressive mathematizing (2) didactical phenomenology dan (3) self-developed models.
1. Guided reinvention and progressive mathematizing. Menurut Gravemijer (1994: 90), berdasar prinsip reinvention, para siswa semestinya diberi kesempatan untuk mengalami proses yang sama dengan proses saat matematika ditemukan. Sejarah matematika dapat dijadikan sebagai sumber inspirasi dalam merancang materi pelajaran. Selain itu prinsip reinvention dapat pula dikembangkan berdasar prosedur penyelesaian informal. Dalam hal ini strategi informal dapat dipahami untuk mengantisipasi prosedur penyelesaian formal. Untuk keperluan tersebut maka perlu ditemukan masalah kontekstual yang dapat menyediakan beragam prosedur penyelesaian serta mengindikasikan rute pembelajaran yang berangkat dari tingkat belajar matematika secara nyata ke tingkat belajar matematika secara formal (progressive mathematizing)
2.   Didactical phenomenology. Gravemeijer (1994: 90) menyatakan, berdasar prinsip ini penyajian topik-topik matematika yang termuat dalam pembelajaran matematika realistik disajikan atas dua pertimbangan yaitu (i) memunculkan ragam aplikasi yang harus diantisipasi dalam proses pembelajaran dan (ii) kesesuaiannya sebagai hal yang berpengaruh dalam proses progressive mathematizing.
3.   Self-developed models, Gravemeijer (1994: 91) menjelaskan, berdasar prinsip ini saat mengerjakan masalah kontekstual siswa diberi kesempatan untuk mengembangkan model mereka sendiri yang berfungsi untuk menjembatani jurang antara pengetahuan informal dan matematika formal. Pada tahap awal siswa mengembangkan model yang diakrabinya. Selanjutnya melalui generalisasi dan pemformalan akhirnya model tersebut menjadi sesuatu yang sungguh-sungguh ada (entity) yang dimiliki siswa. Untuk kepentingan di tingkat operasional, tiga prinsip di atas selanjutnya dijabarkan menjadi lima karakteristik pembelajaran matematika sebagai berikut ini. Karena hal ini maka beberapa di antara karakteristik berikut ini akan muncul dalam pembelajaran matematika

C.     Karakteristik RME
Karakteristik RME adalah menggunakan: konteks “dunia nyata”, model-model, produksi dan konstruksi siswa, interaktif, dan keterkaitan (intertwinment) (Treffers,1991; Van den Heuvel-Panhuizen,1998).
1.1.1        Menggunakan Konteks “Dunia Nyata”
Gambar berikut menunjukkan dua proses matematisasi yang berupa siklus di mana “dunia nyata” tidak hanya sebagai sumber matematisasi, tetapi juga sebagai tempat untuk mengaplikasikan kembali matematika.
Gambar 1 Konsep Matematisasi (De Lange,1987) Dalam RME, pembelajaran diawali dengan masalah kontekstual (“dunia nyata”), sehingga memungkinkan mereka menggunakan pengalaman sebelumnya secara langsung. Proses penyarian (inti) dari konsep yang sesuai dari situasi nyata dinyatakan oleh De Lange (1987) sebagai matematisasi konseptual. Melalui abstraksi dan formalisasi siswa akan mengembangkan konsep yang lebih komplit. Kemudian, siswa dapat mengaplikasikan konsep-konsep matematika ke bidang baru dari dunia nyata (applied mathematization). Oleh karena itu, untuk menjembatani konsep-konsep matematika dengan pengalaman anak sehari-hari perlu diperhatikan matematisi pengalaman sehari-hari (mathematization of everyday experience) dan penerapan matematikan dalam sehari-hari (Cinzia Bonotto, 2000)
1.1.2        Menggunakan Model-model (Matematisasi)
Istilah model berkaitan dengan model situasi dan model matematik yang dikembangkan oleh siswa sendiri (self developed models). Peran self developed models merupakan jembatan bagi siswa dari situasi real ke situasi abstrak atau dari matematika informal ke matematika formal. Artinya siswa membuat model sendiri dalam menyelesaikan masalah. Pertama adalah model situasi yang dekat dengan dunia nyata siswa. Generalisasi dan formalisasi model tersebut akan berubah menjadi model-of masalah tersebut. Melalui penalaran matematik model-of akan bergeser menjadi model-for masalah yang sejenis. Pada akhirnya, akan menjadi model matematika formal.
1.1.3        Menggunakan Produksi dan Konstruksi
Streefland (1991) menekankan bahwa dengan pembuatan “produksi bebas” siswa terdorong untuk melakukan refleksi pada bagian yang mereka anggap penting dalam proses belajar. Strategi-strategi informal siswa yang berupa prosedur pemecahan masalah kontekstual merupakan sumber inspirasi dalam pengembangan pembelajaran lebih lanjut yaitu untuk mengkonstruksi pengetahuan matematika formal.
1.1.4        Menggunakan Interaktif
Interaksi antarsiswa dengan guru merupakan hal yang mendasar dalam RME. Secara eksplisit bentuk-bentuk interaksi yang berupa negosiasi, penjelasan, pembenaran, setuju, tidak setuju, pertanyaan atau refleksi digunakan untuk mencapai bentuk formal dari bentuk-bentuk informal siswa.
1.1.5        Menggunakan Keterkaitan (Intertwinment)
Dalam RME pengintegrasian unit-unit matematika adalah esensial. Jika dalam pembelajaran kita mengabaikan keterkaitan dengan bidang yang lain, maka akan berpengaruh pada pemecahan masalah. Dalam mengaplikasikan matematika, biasanya diperlukan pengetahuan yang lebih kompleks, dan tidak hanya aritmetika, aljabar, atau geometri tetapi juga bidang lain.

D.    Pembelajaran Matematika Realistik (MR)
Menurut Pandangan Konstruktivis Pembelajaran matematika menurut pandangan konstruktivis adalah memberikan kesempatan kepada siswa untuk mengkonstruksi konsep-konsep/prinsip-prinsip matematika dengan kemampuan sendiri melalui proses internalisasi. Guru dalam hal ini berperan sebagai fasilitator.
Menurut Davis (1996), pandangan konstruktivis dalam pembelajaran matematika berorientasi pada:
§  pengetahuan dibangun dalam pikiran melalui proses asimilasi atau akomodasi,
§  dalam pengerjaan matematika, setiap langkah siswa dihadapkan kepada apa,informasi baru harus dikaitkan dengan pengalamannya tentang dunia melalui suatu kerangka logis yang mentransformasikan, mengorganisasikan, dan menginterpretasikan pengalamannya, dan
·        pusat pembelajaran adalah bagaimana siswa berpikir, bukan apa yang mereka katakan atau tulis.
Konstruktivis ini dikritik oleh Vygotsky, yang menyatakan bahwa siswa dalam mengkonstruksi suatu konsep perlu memperhatikan lingkungan sosial. Konstruktivisme ini oleh Vygotsky disebut konstruktivisme sosial (Taylor, 1993; Wilson, Teslow dan Taylor,1993; Atwel, Bleicher & Cooper, 1998).
Ada dua konsep penting dalam teori Vygotsky (Slavin, 1997), yaitu Zone of Proximal Development (ZPD) dan scaffolding. Zone of Proximal Development (ZPD) merupakan jarak antara tingkat perkembangan sesungguhnya yang didefinisikan sebagai kemampuan pemecahan masalah secara mandiri dan tingkat perkembangan potensial yang didefinisikan sebagai kemampuan pemecahan masalah di bawah bimbingan orang dewasa atau melalui kerjasama dengan teman sejawat yang lebih mampu.
Scaffolding merupakan pemberian sejumlah bantuan kepada siswa selama tahap-tahap awal pembelajaran, kemudian mengurangi bantuan dan memberikan kesempatan untuk mengambil alih tanggung jawab yang semakin besar setelah ia dapat melakukannya (Slavin, 1997). Scaffolding merupakan bantuan yang diberikan kepada siswa untuk belajar dan memecahkan masalah. Bantuan tersebut dapat berupa petunjuk, dorongan, peringatan, menguraikan masalah ke dalam langkah-langkah pemecahan, memberikan contoh, dan tindakan-tindakan lain yang memungkinkan siswa itu belajar mandiri. Pendekatan yang mengacu pada konstruktivisme sosial (filsafat konstruktivis sosial) disebut pendekatan konstruktivis sosial. Filsafat konstruktivis sosial memandang kebenaran matematika tidak bersifat absolut dan mengidentifikasi matematika sebagai hasil dari pemecahan masalah dan pengajuan masalah (problem posing) oleh manusia (Ernest, 1991). Dalam pembelajaran matematika, Cobb, Yackel dan Wood (1992) menyebutnya dengan konstruktivisme sosio (socio-constructivism). Siswa berinteraksi dengan guru, dengan siswa lainnya dan berdasarkan pada pengalaman informal siswa mengembangkan strategi-strategi untuk merespon masalah yang diberikan. Karakteristik pendekatan konstruktivis sosio ini sangat sesuai dengan karakteristik RME.
Konsep ZPD dan Scaffolding dalam pendekatan konstruktivis sosio, di dalam pembelajaran MR disebut dengan penemuan kembali terbimbing (guided reinvention). Menurut Graevenmeijer (1994) walaupun kedua pendekatan ini mempunyai kesamaan tetapi kedua pendekatan ini dikembangkan secara terpisah.
Perbedaan keduanya adalah pendekatan konstruktivis sosio merupakan pendekatan pembelajaran yang bersifat umum, sedangkan pembelajaran MR merupakan pendekatan khusus yaitu hanya dalam pembelajaran matematika.

E.     Implementasi Pembelajaran MR
Untuk memberikan gambaran tentang implementasi pembelajaran MR, berikut ini diberikan contoh pembelajaran pecahan di sekolah dasar (SD). Pecahan di SD diinterpretasi sebagai bagian dari keseluruhan. Interpretasi ini mengacu pada pembagian unit ke dalam bagian yang berukuran sama. Dalam hal ini sebagai kerangka kerja siswa adalah daerah, panjang, dan model volume. Bagian dari keseluruhan juga dapat diinterpretasi pada ide pempartisian suatu himpunan dari objek diskret. Dalam pembelajaran, sebelum siswa masuk pada sistem formal, terlebih dahulu siswa dibawa ke “situasi” informal. Misalnya, pembelajaran pecahan dapat diawali dengan pembagian menjadi bagian yang sama (misalnya pembagian kue) sehingga tidak terjadi loncatan pengetahuan informal anak dengan konsep-konsep matematika (pengetahuan matematika formal).
Setelah siswa memahami pembagian menjadi bagian yang sama, baru diperkenalkan istilah pecahan. Ini sangat berbeda dengan pembelajaran konvensional (bukan MR) di mana siswa sejak awal dicekoki dengan istilah pecahan dan beberapa jenis pecahan.
Jadi, pembelajaran MR diawali dengan fenomena, kemudian siswa dengan bantuan guru diberikan kesempatan menemukan kembali dan mengkonstruksi konsep sendiri.

F.      Langkah-langkah Pembelajaran Matematika Realistik
Meninjau karakteristik interaktif dalam pembelajaran matematika realistik di atas tampak perlu sebuah rancangan pembelajaran yang mampu membangun interaksi antara siswa dengan siswa, siswa dengan guru, atau siswa dengan lingkungannya. Dalam hal ini, Asikin (2001: 3) berpandangan perlunya guru memberikan kesempatan kepada siswa untuk mengkomunikasikan ide-idenya melalui presentasi individu, kerja kelompok, diskusi kelompok, maupun diskusi kelas. Negosiasi dan evaluasi sesama siswa dan juga dengan guru adalah faktor belajar yang penting dalam pembelajaran konstruktif ini.
Implikasi dari adanya aspek sosial yang cukup tinggi dalam aktivitas belajar siswa tersebut maka guru perlu menentukan metode mengajar yang tepat dan sesuai dengan kebutuhan tersebut. Salah satu metode mengajar yang dapat memenuhi tujuan tersebut adalah memasukkan kegiatan diskusi dalam pembelajaran siswa. Aktivitas diskusi dipandang mampu mendorong dan melancarkan interaksi antara anggota kelas. Menurut Kemp (1994: 169) diskusi adalah bentuk pengajaran tatap muka yang paling umum digunakan untuk saling tukar informasi, pikiran dan pendapat. Lebih dari itu dalam sebuah diskusi proses belajar yang berlangsung tidak hanya kegiatan yang bersifat mengingat informasi belaka, namun juga memungkinkan proses berfikir secara analisis, sintesis dan evaluasi. Selanjutnya perlu pula ditentukan bentuk diskusi yang hendak dilaksanakan dengan mempertimbangkan kondisi kelas yang ada. Karena pembelajaran dalam rangka penelitian ini dilaksanakan dalam sebuah kelas yang pada umumnya beranggotakan 40 sampai 44 siswa dengan penempatan siswa yang sulit untuk membentuk kelompok diskusi besar, maka interaksi antar siswa dimunculkan melalui diskusi kelompok kecil secara berpasangan selain diskusi kelas.
Mendasarkan pada kondisi kelas seperti uraian di atas serta beberapa karakteristik dan prinsip pembelajaran matematika realistik, maka langkah-langkah pembelajaran yang dilaksanakan dalam penelitian ini terdiri atas:
Langkah 1. Memahami masalah kontekstual
Pada langkah ini guru menyajikan masalah kontekstual kepada siswa. Selanjutnya guru meminta siswa untuk memahami masalah itu terlebih dahulu.
Karakteristik pembelajaran matematika realistik yang muncul pada langkah ini adalah menggunakan konteks. Penggunaan konteks terlihat pada penyajian masalah kontekstual sebagai titik tolak aktivitas pembelajaran siswa.
Langkah 2. Menjelaskan masalah kontekstual.
Langkah ini ditempuh saat siswa mengalami kesulitan memahami masalah kontekstual. Pada langkah ini guru memberikan bantuan dengan memberi petunjuk atau pertanyaan seperlunya yang dapat mengarahkan siswa untuk memahami masalah.
Karakteristik pembelajaran matematika realistik yang muncul pada langkah ini adalah interaktif, yaitu terjadinya interaksi antara guru dengan siswa maupun antara siswa dengan siswa. Sedangkan prinsip guided reinvention setidaknya telah muncul ketika guru mencoba memberi arah kepada siswa dalam memahami masalah.
Langkah 3. Menyelesaikan masalah kontekstual.
Pada tahap ini siswa didorong menyelesaikan masalah kontekstual secara individual berdasar kemampuannya dengan memanfaatkan petunjuk-petunjuk yang telah disediakan. Siswa mempunyai kebebasan menggunakan caranya sendiri. Dalam proses memecahkan masalah, sesungguhnya siswa dipancing atau diarahkan untuk berfikir menemukan atau mengkonstruksi pengetahuan untuk dirinya. Pada tahap ini dimungkinkan bagi guru untuk memberikan bantuan seperlunya (scaffolding) kepada siswa yang benar-benar memerlukan bantuan.
Pada tahap ini , dua prinsip pembelajaran matematika realistik yang dapat dimunculkan adalah guided reinvention and progressive mathematizing dan self-developed models. Sedangkan karakteristik yang dapat dimunculkan adalah penggunaan model. Dalam menyelesaikan masalah siswa mempunyai kebebasan membangun model atas masalah tersebut.
Langkah 4. Membandingkan dan mendiskusikan jawaban
Pada tahap ini guru mula-mula meminta siswa untuk membandingkan dan mendiskusikan jawaban dengan pasangannya. Diskusi ini adalah wahana bagi sepasang siswa mendiskusikan jawaban masing-masing. Dari diskusi ini diharapkan muncul jawaban yang dapat disepakati oleh kedua siswa. Selanjutnya guru meminta siswa untuk membandingkan dan mendiskusikan jawaban yang dimilikinya dalam diskusi kelas. Pada tahap ini guru menunjuk atau memberikan kesempatan kepada pasangan siswa untuk mengemukakan jawaban yang dimilikinya ke muka kelas dan mendorong siswa yang lain untuk mencermati dan menanggapi jawaban yang muncul di muka kelas.
Karakteristik pembelajaran matematika realistik yang muncul pada tahap ini adalah interaktif dan menggunakan kontribusi siswa. Interaksi dapat terjadi antara siswa dengan siswa juga antara guru dengan siswa. Dalam diskusi ini kontribusi siswa berguna dalam pemecahan masalah.
Langkah 5. Menyimpulkan         
Dari hasil diskusi kelas guru mengarahkan siswa untuk menarik kesimpulan mengenai pemecahan masalah, konsep, prosedur atau prinsip yang telah dibangun bersama.
Pada tahap ini karakteristik pembelajaran matematika realistik yang muncul adalah interaktif serta menggunakan kontribusi siswa.


BAB III
PENUTUP

A.     Simpulan
Berdasarkan uraian di atas, maka sebagai simpulan dapat disampaikan beberapa hal sebagai berikut. Matematika Realistik (MR) merupakan matematika sekolah yang dilaksanakan dengan menempatkan realitas dan pengalaman siswa sebagai titik awal pembelajaran.
Pembelajaran MR menggunakan masalah realistik sebagai pangkal tolak pembelajaran, dan melalui matematisasi horisontal-vertikal siswa diharapkan dapat menemukan dan merekonstruksi konsep-konsep matematika atau pengetahuan matematika formal. Selanjutnya, siswa diberi kesempatan menerapkan konsep-konsep matematika untuk memecahkan masalah sehari-hari atau masalah dalam bidang lain. Dengan kata lain, pembelajaran MR berorientasi pada matematisasi pengalaman sehari-hari (mathematize of everyday experience) dan menerapkan matematika dalam kehidupan sehari-hari (everydaying mathematics), sehingga siswa belajar dengan bermakna (pengertian).
Pembelajaran MR berpusat pada siswa, sedangkan guru hanya sebagai fasilitator dan motivator, sehingga memerlukan paradigma yang berbeda tentang bagaimana siswa belajar, bagaimana guru mengajar, dan apa yang dipelajari oleh siswa dengan paradigma pembelajaran matematika selama ini. Karena itu, perubahan persepsi guru tentang mengajar perlu dilakukan bila ingin mengimplementasikan pembelajaran matematika realistik.

B. Saran
Sesuai dengan simpulan di atas, maka disarankan:
(1) kepada pakar atau pencinta pendidikan matematika untuk melakukan penelitian-penelitian yang berorientasi pada pembelajaran MR sehingga diperoleh global theory pembelajaran MR yang sesuai dengan sosial budaya Indonesia, dan
(2)  kepada guru-guru matematika untuk mencoba mengimplementasikan pembelajaran MR secara bertahap, misalnya mulai dengan memberikan masalah-masalah realistik untuk memotivasi siswa menyampaikan pendapat.



DAFTAR PUSTAKA

Asikin, M. 2001. “Realistic Mathematics Education (RME): Prospek dan Alternatif Pembelajarannya”. Makalah disajikan pada Seminar Nasional Matematika di UNNES Semarang. Tanggal: 27 Agustus 2001.

Tidak ada komentar:

Posting Komentar